• Chip Based Optical Nanoscopy: System Integration and Automation 

      Hansen, Daniel Henry (Mastergradsoppgave; Master thesis, 2019-05-15)
      An integrated photonic chip based nanoscopy system has previously been developed at UiT, which allows for several advantages over conventional total internal reflection fluorescence microscopy and nanoscopy (i.e. super-resolutionnanoscopy). While the proof-of-concept has been demonstrated, there were several important system optimization tasks that were needed for making the ...
    • Fluorescence fluctuation-based super-resolution microscopy using multimodal waveguided illumination 

      Opstad, Ida Sundvor; Hansen, Daniel Henry; Acuña Maldonado, Sebastian Andres; Ströhl, Florian; Priyadarshi, Anish; Tinguely, Jean-Claude; Dullo, Firehun Tsige; Dalmo, Roy Ambli; Seternes, Tore; Ahluwalia, Balpreet Singh; Agarwal, Krishna (Journal article; Tidsskriftartikkel; Peer reviewed, 2021-07-19)
      Photonic chip-based total internal reflection fluorescence microscopy (c-TIRFM) is an emerging technology enabling a large TIRF excitation area decoupled from the detection objective. Additionally, due to the inherent multimodal nature of wide waveguides, it is a convenient platform for introducing temporal fluctuations in the illumination pattern. The fluorescence fluctuation-based nanoscopy technique ...
    • Label-free superior contrast with c-band ultra-violet extinction microscopy 

      Wolfson, Deanna; Opstad, Ida Sundvor; Hansen, Daniel Henry; Mao, Hong; Ahluwalia, Balpreet Singh; Ströhl, Florian (Journal article; Tidsskriftartikkel; Peer reviewed, 2023-03-03)
      In 1934, Frits Zernike demonstrated that it is possible to exploit the sample’s refractive index to obtain superior contrast images of biological cells. The refractive index contrast of a cell surrounded by media yields a change in the phase and intensity of the transmitted light wave. This change can be due to either scattering or absorption caused by the sample. Most cells are transparent at visible ...
    • Multifocus microscopy with optical sectioning and high axial resolution 

      Ströhl, Florian; Hansen, Daniel Henry; Nàger, Mireia; Birgisdottir, Åsa birna (Journal article; Tidsskriftartikkel; Peer reviewed, 2022)
      Multifocus microscopy enables recording of entire volumes in a single camera 11 exposure. In dense samples, multifocus microscopy is severely hampered by background haze. 12 Here, we introduce a scalable multifocus method that incorporates optical sectioning and offers 13 improved axial resolution capabilities. In our method, a dithered oblique light-sheet scans the 14 sample volume during a ...
    • Multifocus microscopy with optically sectioned axial superresolution 

      Ströhl, Florian; Hansen, Daniel Henry; Nager Grifo, Mireia; Birgisdottir, Åsa Birna (Journal article; Tidsskriftartikkel, 2022)
      Multifocus microscopy enables recording of entire volumes in a single camera exposure. In dense samples, multifocus microscopy is severely hampered by background haze. Here, we introduce a scalable multifocus method that incorporates optical sectioning and offers axial superresolution capabilities. In our method, a dithered oblique light-sheet scans the sample volume during a single exposure, while ...
    • Scalable-resolution structured illumination microscopy 

      Butola, Ankit; Acuna Maldonado, Sebastian Andres; Hansen, Daniel Henry; Agarwal, Krishna (Journal article; Tidsskriftartikkel; Peer reviewed, 2022-11-15)
      Structured illumination microscopy suffers from the need of sophisticated instrumentation and precise calibration. This makes structured illumination microscopes costly and skill-dependent. We present a novel approach to realize super-resolution structured illumination microscopy using an alignment non-critical illumination system and a reconstruction algorithm that does not need illumination ...